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Abstract—A mixing-length formulation modified in accordance with the suggestion of Rotta is used to
predict the Fanning friction factor and the heat transfer coeflicient on corrugated (roped) tubes. Several
empirical parameters are required in this formulation and they are obtained via experimental data fitting.
The experiments are carried out with water flow in corrugated tubes in the ranges 10* < Re < 6 x 10* and
2.2 € Pr < 3.4. Simple correlations are suggested for the relations between the two most important
empirical parameters—the dimensionless distance A#n that shifts downward the reference wall and the
cavity Stanton number, St,, and the geometrical parameters of the ridges of the tubes. These correlations
yield the mean value boundary layer profiles, Fanning friction factors and Nusselt (Stanton) numbers
through the solution of the momentum and energy transfer equations for one-dimensional time-
independent stabilized flow.

INTRODUCTION

IN A RECENT paper [1] we studied theoretically the
fluid friction and in-tube heat transfer for a stabilized
turbulent flow of an incompressible fluid in a round
tube with internally sand-grain-roughened walls
at moderate Prandtl numbers. A mixing-length ap-
proach [2] was used in the formulation of Rotta [3] to
generalize our earlier results [4, 5] for smooth wall
tubes. Tables of Fanning friction factors and in-tube
Nusselt numbers were presented in refs. [1, 4, 5] to
compare our predictions to similar theoretical and/or
experimental results published elsewhere.

The mixing-length approach for the study of
stabilized turbulent flows with internal roughness
depends essentially on the knowledge of a dimen-
sionless quantity Ax accounting for the influence of
the roughness elements on the hydraulic and thermal
characteristics of the flow (for smooth tubes Ay = 0).
Formally the reference wall is shifted downward by a
distance Ay and moves with a velocity AU in a direc-
tion opposite to the direction of the main flow. If An
is known as a function of the geometrical parameters
of a particular type of wall roughness, then the pro-
cedure developed in our previous studies [1, 4] can
casily be applied to predict the friction characteristics
of the flow in a circular tube with its walls roughened
correspondingly. Usually the dependence of Ay on the
roughness geometry is determined using experimental
information [3]. Once the mean value boundary layer
profiles are available, with additional assumptions for
a turbulent Prandtl number [3] and a cavity Stanton
number [6], the numerical solution of the energy equa-
tion can be carried out.

The purpose of this communication is to extend the
method [3] for the prediction of Ay for corrugated
(roped) tubes [7-11], using data for the geometry of
the helical ridges and our experimental information
for the hydraulic behaviour of the flow. This infor-
mation was discussed in detail in part 1 of the present
study [12] where it was reported in a form compatible
with that of other authors. An attempt is also made
to understand better the influence of the ridge shape
on the momentum transfer mechanism. Next, we
extend the idea of a sand-roughened wall thermal
resistance [1, 6] for the case of corrugated tubes [7-10].
Lastly, we report numerical results for the Fanning
friction factor and the in-tube Stanton number for the
tubes investigated. These results were obtained using
the formalism and the slightly modified software
described earlier 1, 4, 5]. Due to the absence of
detailed information for the geometry of the cor-
rugated tubes studied in refs. [7-10], a direct com-
parison for the friction factors between our pre-
dictions and similar results reported by other authors
is not possible.

THE PHYSICAL MODEL

Despite the fact that several studies [7-10] were
conducted on a variety of corrugated surfaces, a lack
of sufficient knowledge about the flow mechanism
over corrugated surfaces does not permit the pre-
diction of the friction factors and the heat transfer
rates by analytical methods. The similarity law
concept, which was first developed by Nikuradse [13]
to correlate the friction results inside sand-grain-
roughened tubes. was applied later [6, 14] to heat .
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¢, specific heat capacity [J kg™ ' K™']

D, tube inside diameter [m]

e roughness height [m]

h, in-tube heat transfer coefficient
[Wm ‘K ']

k thermal conductivity [Wm™ 'K ']

L mixing length [m]

P pitch of corrugation [m]

5

G heat flux [W m™°}
tube radius [m]

§ cap height of the ridge [m]
t cap width of the ridge [m]
T temperature [K]

U fluid velocity [ms '}

Uy shear velocity, (z,,/p)"" [ms™']

X axial distance [m]

¥ radial distance from the wall [m].
Greek symbols

B helix angle [deg]

& eddy diffusivity of heat [m* s ']

n eddy kinematic viscosity [m” s~ ']

i dynamic viscosity [Pa s]

v kinematic viscosity [m”s ']

P fluid density [kg m ]

T shear stress [Pa].
Dimensionless groups

et roughness Reynolds number,

(¢e/ D)) Re(fi2)"
/ Fanning friction factor, 2t,./(pUZ)

'G(e*, Pr) heat transfer roughness function,
[(f12St—1)/(112)"*+ R(e™)]

NOMENCLATURE

L7 dimensionless mixing length, (Lu,/v)

Nu  Nusselt number, (D, /k)

Pr Prandtl number, (¢,u/k)

Pr,  turbulent Prandtl number, (¢.,/¢,)

rt dimensionless radius of the tube,
(Diuty/2v)

Re Reynolds number, (U, D;/v)

R(e*) momentum transfer roughness function,
V@I 42510 2e/D) +3.75

St Stanton number, [4/(pU,.c,)]

T+  dimensionless temperature. 7/(q,/p¢,uy)

U™ dimensionless velocity, Uju,

Be B0

0 dimensionless temperature,
(T,=DNT,—T,)

0 dimensionless radial distance measured

from the wall, (y/r,)
An dimensionless shift, (Ay/r,)
@,  dimensionless group, (p—1)-sje’.

Subscripts

c core region

¢ at the top of the ridge

1 inside diameter

m mean value

max maximum value

r rough tube

s smooth tube

w at the wall.
Superscript

H constant wall heat flux.

transfer studies. The model [6, 14] is based on the
heat-momentum transfer analogy, for a two-region
flow model. This model yields the velocity distribution
for the turbulence-dominated part of the flow near
the wall as

Ut =251n(p/e)+ R(e™). 1))

The friction factor can be obtained by integrating the
velocity U™ = U™ (y), equation (1), over the entirc
cross-section of the tube. Utilizing the velocity defect
law in the form U7, — U} = 3.75, the similarity law
for rough surfaces can be obtained in the form

R(e*) = J(2/)+2.5In (2¢/D)+3.75.  (2)

Based on the assumption that the wall similarity
law applies to both temperature and velocity profiles,
in ref. [6] a heat transfer similarity law was proposed

125t — 1
G(e*, Pr) = (1/ ;l +R(e™). (3)
V)

The functions R and G, equations (2) and (3).
represent the effect of the roughness on the momen-
tum and heat transport in the neighbourhood of the
wall. They are independent of the geometry and the
size of the test channel and are functions of such local
parameters as the roughness Reynolds number

et =e/D; Re /(fj2)

the geometry of the ribs pje, f§, and the ridge shape
for corrugated tubes. The values of R and G are
usually determined from experimental information.
This point of view was shared by many authors
investigating corrugated tubes: however, different
values for the functions R and G were reporied,
according to the geometry and the shape of the helical
ridging [7-10]. Regardless of this the R and G func-
tions facilitate the comparison of the experimental
results reported. In ref. [11] we showed that the func-
tion R = R(e™), representing the effect of the rough-
ness on the momentum transport in the region near
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the wall, could be related to the following geometrical
parameters of the helical ridge (see Fig. 1) and the
Reynolds number Re:

R = R(Re,e/D;, ®,,8,) Gy
where

=)
G

By = B/90°.

We expect that the same variables as in equation (4)
will determine the dimensionless shift Ay and we shall
obtain a simple power law correlation for Ay in the
form

An = a, Re"i(e/ D)@y By )]

Detailed information for the geometry of corrugated
tubes studied from other authors particularly to cal-
culate the complex @, is lacking in the literature and
we have to utilize the information from our exper-
iments to obtain this correlation.

In the fully turbulent part of the wall region, the
law of the wall for a uniformly roughened surface is
similar to that for a smooth surface and the mean
velocity distribution for smooth and rough surfaces
differ with a constant value AU ™ [3], namely

AU* = Ur —UF = AU (An). (6a)

For a particular roughness the value of AU™ can be
obtained from

AU* = 2.5In {05Re J(f12)} + 175 —/QIf)
(6b)

if the data for the friction factor f are already avail-
able.

To investigate the effect of the helical ridge rough-
ness of the tube wall on the total thermal resistance
of the fluid the latter can be decomposed into two
compornents :

(a) the thermal resistance of the fluid surrounding
the roughness elements in the region 0 < y < 2¢/D; ;

F1G. 1. Characteristic parameters of a spirally corrugated
tube.
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(b) the thermal resistance of the core region
Ze/Di <n < 1.

Having this in mind we can describe the total thermal
resistance of the fluid in the form of a Stanton number
St, as

- U i Um
st =Py P Ty
qw 9w
C, U’m e, U
+ 7T =BT - T YD
+ 817 = (T ~THJCIN+S!
where St ' is the core resistance which can be cal-

culated using standard techniques [5, 15], while the
wall layer resistance Sty ' which depends essentially

on the particular type of roughness is defined from

.t;‘z—;—_ < P JQIf) = St St
N gle*. Pry2lf)

)

It is calculated as the difference between the total
thermal resistance and the core thermal resistance.
The function g{e*, Pr} in equation (7) is similar to
the function G(e*, Pr), equation (3), defined in ref.
[6] and utilized in refs. [7-10, 14]. The two functions,
however, could differ quantitatively since the function
gle™, Pr) reflects the fluid thermal resistance in the
region 0 < 5 < 2¢/D,, i.e. up to the top of the ridge,
whereas the function G{e*, Pr) represents the thermal
resistance of the region near the wall beyond which
the shear stresses due to viscosity can be neglected
completely.

From the above it becomes clear that once Ay and
gle™, Pr) are derived using experimental data for f
and St, one can apply the procedures developed in
refs. [1, 4, 5] to predict fluid friction and intube heat
transfer for the case of corrugated tubes,

THE MATHEMATICAL MODEL AND ITS
SOLUTION

The solution deals with heat transfer for the case of
a fully developed turbulent flow in a corrugated tube
having internal helical ridges with boundary con-
ditions of uniform wall heat flux. The uniform wall
temperature boundary condition is not studied in
what follows because it is known [1, 16] that numeri-
cally the difference between the Nusselt (Stanton)
numbers for uniform wall temperature and uniform
wall heat flux is of the order of the experimental errors.
The results to be reported are obtained if the following
assumptions hold:

(i) the fluid is single-phase, incompressible and its
physical properties are constant ;

(ii) the transport processes are time independent ;

(iii) the turbulent flow is both hydrodynamically
and thermally stabilized ;
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(iv) the axial conduction and viscous dissipation in
the fluid are neglected.

Momentum transfer
For the case considered the momentum equation

yields the linear shear stress distribution as
T, = 1—x (8a)

where the shear stress is assumed to satisfy the consti-
tutive equation

t 1 l+am du
T, rl v/ ody o

Following ref. [1], for the wall region of the rough
tube the eddy kinematic viscosity can be defined as

(8b)

&

N . Lt 2 dU+
=r - N
v CArY ) dp

(LT /) = 04(m+An) {1 —exp [—(n+An)ry [26]].
(8d)

0<y<n, (8¢)

where

Obviously, to calculate the velocity U™ () and the
cddy kinematic viscosity ¢,/v(n) from cquation (8)
onc has to know the dependence of the dimensionless
shift Ay on the geometry of the corrugated tube. Now
following ref. [3], we shall extend the model for sand-
grain roughness to helical ridging roughness and we
shall establish a relationship between Ay and Re, ¢/D;,
®, and f,. For this purpose equations (8) are inte-
grated from zero to an unknown upper limit Ay for a
given AU* . thus

M fquU+
j <dn>d”‘AU*=0 (%)
1]
with
v _ 2r3 [1 = (7 + An)]
dn - 1+“+4ru+z[]"("l-i-A'])](L*’,’,-:r 2}1),5-
(9b)
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0.8 E
0.5 A'll'y)
0.4

0.3

0.2

Anle/Dy)-089 3*-2.14 ¢3;o7

N. L. VULCHANOV et dl.

The values for AU™ in equation (9a) were obtained
from equation (6b) using the experimental data for
the friction factor coefficient f. Now Ay can be cal-
culated as the root of the (implicit) non-lincar cqua-
tion (9a). Figure 2 shows the calculated results for
the casc of helical ridging roughness. They can be
approximated by (see also equation (5))

AV] — 1085R() I)ISN((),/’D‘)“'}“)/)';"I4(I)*“‘“7 (l())

in the ranges

10 < Re < 6x10*;
0.760 < B, < 0.950;

0.017 <e/D; < 0.047:
1.40 < ®, < 5.90.

To obtain correlation (10) we used modifications of
the QUADPACK routine QNG [17] to approximatc
the integral in equation (9a), of the function ZEROIN
[18] to solve equation (9a) for Ay for different values
of AU" and the LINPACK routines DQRDC and
DQRSL [19] to find the linear least squares fit for the
data. The data set utilized to derive correlation (10)
comprised 150 experimental points. The relative
residuals for Any did not exceed + 10% for all points.

In the core region there will be no correction for
the wall roughness and the eddy kinematic viscosity
distribution is the same as in ref. [1] (see also ref. [20])

£n/v = 0.07044rF [1 — (1 =) )11 +2.345(1 — 1)}
(1

in the range n,, <y < .

The computational procedure which yields the vel-
ocity profile U™ (5) and the values for r; and #,
from equations (8). (10) and (11) was discussed in
detail in ref. [1]. Once the velocity distribution is avail-
able, the Fanning friction factor f can be predicted

from
| 2
f= O.SH (1=mU*m dn} . (12)

A%= 108.5Re-058

0.1 L

3 4 5 8

Rex 104

FiG. 2. Variations of An(e/D;,)~**"f, > ""®5"7 with Reynolds number.
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Heat transfer

With the above assumptions the energy equation in
the case of a constant wall heat flux boundary con-
dition is [21]

d Pr g, |d8
TG IR

+U MDA —Nu =0 (13a)
with

9
=1 —-=0

n=0,0=0; an

(13b)
Taking into account the correction for the roughness
Ay, the turbulent Prandtl number Pr, is defined
[1,3,21) as

Pr, =
0.9098* 26, n=10
I—exp [~ (n+An)rs/26]
0.909 €y
(—exp[—(n+Anyrs B O <TS
0.909, e < <1
(13¢)

5
Bt =Pr Y CJlog P!, 002<Pr<15

(13d)

and C, = 31.96, C, = 28.79, C; = 33.95, C, = 6.33,
Cs= —1.186.

The solution of the heat transfer problem, equa-
tions (13), is a particular case of the problem discussed
in detail in ref. [1]. Part of this procedure is applied
to compute the heat transfer coefficient Nu" in tubes
with helical ridging, calculating the values of Lyon’s
integral [15]

5

(I=mU™ () d’i)

1
(Nu"')“'—*Zf q'” d
2e!Dy) a-ml1+ r e 1.
1 Prov
(14)

16

1e
8
?
a
N

. 5
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s ]
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Many authors [9, 10, 22--24], indicate the insen-
sitivity of the G-function to the variation of the shape
and the geometrical parameters of the turbulence pro-
moters, since the function R(e™) involved in the com-
putation of the G-function already takes into account
the hydraulic characteristics of the flow and the rough-
ness parameters. We accept those arguments and sug-
gest a power law relationship for the g-function in the
form

gle™, Pr) = by(et)'r Pr-. {15a)

As discussed in an earlier report [25], the values of the
constants b, and b, in equation (15a) can be found
applying Huntley’s dimensional analysis {26] without
any experimental information. The values derived
from the model [25] are , = 0.20 and b, = 0.60. To
verify the model [25] the variation of g(e*, Pr)Pr "%
with e was investigated, and Fig. 3 shows this vari-
ation where the final correlation obtained is

gle®. Pr) = 1.96(e* )™ Pr*®, 20 <e* < 300,
(15b)

RESULTS AND DISCUSSION

The Fanning friction factors calculated by equation
(12) were compared with 346 experimental points
obtained from 25 corrugated tubes tested. Two hun-
dred and ninety-one points show a relative difference
of less than + 10% and for the remaining 56 points the
relative difference is + 10-15%. The numerical results
for the friction factors together with the experimental
data of some corrugated tubes tested are presented in
Table 1.

The heat transfer coefficients (transformed as Stan-
ton numbers) were calculated using equations (13)—
(15). Three hundred and twenty-four calculated
points were compared with those measured from the
experiments. Except 19, all points show a relative
difference of less than +10% and the maximum rela-
tive difference is less than +15%. Part of the results

1 1 ]

20 50

et
F

—

100 200 300

G. 3. Variations of g(e*, PryPr~%%" with roughness Reynolds number (e*).
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Table |
Tube Tube Tube

No. R fu  fue No.  Re foo No.  Re  f ok

11 14400  0.0216  0.0209 18 15900  0.0316  0.0321 26 14500  0.0238  0.0217
36800  0.0191 0.0194 36900  0.0282  0.0275 36200  0.0202  0.0200
59900 0.0174  0.0184 S3100  0.0271 0.0254 58900  0.0190  0.0189

12 16400  0.0193  0.0213 19 13700  0.0277  0.0280 27 13700  0.0286  0.0270
33500 0.0178  0.0200 32200  0.0244  0.0248 35000  0.0258  0.0238
57900  0.0162  0.0180 55900  0.0232  0.0226 58800  0.0240  0.0219

13 14 500 0.0226  0.0239 21 19300  0.0232  0.0229 29 15400  0.0264  0.0262
36500 0.0190  0.0217 33400  0.0218  0.0216 33500 0.0231 0.0235
59400  0.0179  0.0203 53200  0.0207  0.0204 55500  0.0220  0.0219

15 15600  0.0214  0.0221 23 13600  0.0230  0.0250 31 16200  0.023¢  0.0231
39300  0.0191 0.0202 37300  0.0202  0.0222 35400  0.0210  0.0214
59500 00174  0.0192 58500  0.0184  0.0208 53100 0.0200  0.0203

17 14800  0.0260 0.0272 24 14300  0.0215  0.0222 32 15800  0.0341 0.0321
36800  0.0241 0.0240 36700 0.0196  0.0203 33600  0.0305  0.0280
58100 0.0228  0.0221 57600  0.0181 0.0193 55800  0.0280  0.0252

33 15400  0.0143  0.0136 34 17200  0.0185  0.0181 35 14400  0.0363  0.0343
31900  0.0130  0.0128 35700 0.0160  0.0173 29700  0.0332  0.0300
53700  0.0120  0.0125 56100 00152 0.0166 49600  0.0305  0.0268

Table 2
Tube Tube

No. Re Pr AYR

cale,

Sto,

13 13900 3.23  0.00466 0.00446
40300 2.46 0.00426 0.00460
55200 220 0.00416 0.00452

15 13700  3.17 0.00419 0.00425
24600 2.77 0.00437 0.00439
49100 2,19 0.00425 0.00465

17 14000  3.24 0.00506 0.00458
37100 2.55 0.00464 0.00424
52800 223 0.00447 0.00418

18 15800  3.12  0.00560 0.00509
39300 243 0.00502 0.00511
52200  2.18 0.00478 0.00491

19 13400 321 0.00507 0.00476
28800 2.67 0.00473 0.00452
53400 220 0.00446 0.00434

32 16300 3.03 0.00568 0.00515
27200 2.66 0.00536 0.00506
52000 2.17 0.00484 0.00516

21 15100  3.25 0.00451 0.00453
39200 2.57 0.00414 0.00445
51200 236 0.00407 0.00415

24 14000 321 0.00444 0.00424
27500 2.72  0.00434 0.00450
51300 221 0.00420 0.00446

26 15700  3.10 0.00442 0.00428
26400 2.75 0.00431 0.00456
51300 225 0.00407 0.00427

29 17100 2.88 0.00488 0.00478
27400  2.59  0.00466 0.00469
49700  2.18 0.00443 0.00470

31 13700  3.17 0.00471 0.00433
39000 246 0.00441 0.00448
52700 218 0.00425 0.00453

33 13900  3.14 0.00301 0.00306
41300 240 0.00316 0.00337
51600 222 0.00309 0.00350

are summarized in Table 2. Taking into account the
experimental error in the measurements, this agree-
ment should be considered as fairly good.
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CARACTERISTIQUES DE TRANSFERT THERMIQUE ET DE FROTTEMENT POUR
DES TUBES CORRUGUES EN SPIRALE POUR CONDENSEURS DE CENTRALE
THERMIQUE—2. UN MODELE DE LONGUEUR DE MELANGE POUR PREDIRE LE
FROTTEMENT FLUIDE ET LE TRANSFERT THERMIQUE

Résumé—On utilise une formulation de longueur de mélange modifiée pour s"accorder & la suggestion de
Rotta afin de prédire le facteur de frottement et le coefficient de transfer dans les tubes corrugués. Plusicurs
paramétres empiriques sont nécessaires dans celle formulation et ils sont obtenus a I'aide des données
expérimentales. Les expériences sont faites avec de 'eau dans des tubes corrugués dans les domaines
10* € Re < 6x10%et 2,2 € Pr < 3,4. Des formules simples sont suggérées pour les relations entre les deux
parametres les plus importants, 4 la distance adimensionnelle An et le nombre de Stanton St,, de la cavité,
ainsi que les paramétres géométriques. Ces formules donnent les profils des couches limites, les coefficients
de frottement et les nombres de Nusselt (Stanton) a travers les solutions des équations de la quantité de
mouvement et de I'énergie pour un écoulement monodimensionnel, indépendant du temps.

WA'RMFT.UBERGANG UND DRUCKABFALL AN SPIRALFORMIG GERILLTEN
ROHREN FUR KRAFTWERKSKONDENSATOREN—2. EIN MISCHUNGSWEGMODELL
ZUR BESTIMMUNG VON REIBUNG UND WARMEUBERGANG

Zusammenfassung—Es wird ein Mischungswegmodell, welches entsprechend den Vorschliigen von Rotta
modifiziert wurde, zur Berechnung des Widerstandsbeiwerts und des Wirmeiibergangskoeffizienten in
gerillten Rohren verwendet. Dabei wird eine Reihe empirischer Parameter bendtigt, die durch Anpassung
an Versuchsdaten gewonnen werden. Die Versuche werden in wasserdurchstrémten, geriliten Rohren im
Bereich der Reynolds-Zahl von 10* bis 6 x 10° und der Prandtl-Zahl von 2,2 bis 3,4 durchgefiihrt. Es werden
einfache Korrelationen fiir die Beziehung zwischen den beiden wichtigsten Parametern angegeben—dem
dimensionslosen Abstand Ay, der sich von oben nach unten entlang der Bezugswand und mit der Stanton-
Zahl des Hohlraums S, verdndert sowie den geometrischen Parametern der Rohrrillen. Diese Kor-
relationen liefern die mittleren Grenzschichtprofile, die Widerstandsbeiwerte und die Nusselt-(Stanton-)
Zahl durch die Lésung der Impuls- und Energiegleichung fiir eindimensionale stationire stabilisierte

Stromung.
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XAPAKTEPUCTHKH TEIIJIOINEPEHOCA U TPEHUE TPYB CO CITHPAJIBHbIM
OPEBPEHHUEM B KOHAEHCATOPAX OHEPI'ETHYECKHUX YCTAHOBOK—2.
HUCITONB30BAHUE MOAEINU JJIMHBI CMEIIEHUA A1 PACUETA
T’MAPOAUHAMUYECKOI'O TPEHUA U TEIJIOIIEPEHOCA

Annotamus—®OopMyJIMpOBKA JJIMHBI CMELICHUS, MOANQHINPOBAHHAS B COOTBETCTBHH C MPEANOJIOXKE-
nneM PoTta, ucnone3yeTcs mis pacdera Ko3bdULIHEHTOB TPEHHA M TEILIONMEPeHoca B OpeGpeHHbIX (C
HapuBKO#H) Tpy6. IIpH 3TOoM TpebyroTCA HECKOJIBKO 3MIMPHYECKMX NAapaMETPOB, KOTODBIC MOJYyYEHbI
nocpeacTsoM 0600LIEHMS IKCIEPAMEHTAIbHBIX NAHHBIX. DKCIIEPHMEHTBI IPOBOANIHCH C NOTOKOM BOIbI
B opebpeHHLIX Tpybax B aHanasoHax 10* < Re € 6 x 10* u 2,2 € Pr < 3,4. Ipes1oxkeHbl TPOCTBIE COOT-
HOLIEHAS MeXIy Ge3pa3MepHbIM paccTosHHeM A, yuciioM CTIHTOHA ANs NOJOCTH St,, H r€OMETPHYEC-
KMMH NapaMeTpaMH, XapaKTepH3yIOIHMH opeOpeHne TpyO. DTH COOTHOLIEHHS NO3BOJIAIOT ONPENEMTh
npodHIN CPEHHX BEJMYMH B MOTPAaHMYHOM cJioe, KodhduimenTnl Tpenus W uucna Hyccensra
(CTPHTOHA) C MOMOLIBIO PEUIEHHs] YPaBHEHHH KOJIMYECTBA JBM)KEHHS M IHEPTUM [UIS OLMHOMEDHOIO CTa-
UHOHAPHOTO YCTOHYMBOIO TEUCHHUA. :



