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corrugated tubes for power plant condensers-2. 

A mixing-length model for predicting fluid 
friction and heat transfer 

N. L. VULCHANOV, V. D. ZIMPAROV and L. B. DELOV 

School of Mechanical and Electrical Engineering, 4, ‘H. Dimitar’ Sk.. 5300 Gabrovo, Bulgaria 

Abstract-A mixing-length formulation modified in accordance with the suggestion of Rotta is used to 
predict the Fanning friction factor and the heat transfer coefficient on corrugated (roped) tubes. Several 
empirical parameters are required in this formulation and they are obtained via experimental data fitting. 
The experiments are carried out with water flow in corrugated tubes in the ranges 10’ < Re < 6 x lo4 and 
2.2 < Pr < 3.4. Simple correlations are suggested for the relations between the two most important 
empirical parameters-the dimensionless distance Au that shifts downward the reference wall and the 
cavity Stanton number, SI,, and the geometrical parameters of the ridges of the tubes. These correlations 
yield the mean value boundary layer profiles, Fanning friction factors and Nusselt (Stanton) numbers 
through the solution of the momentum and energy transfer equations for one-dimensional time- 

independent stabilized flow. 

INTRODUCTION 

IN A RECENT paper [I] we studied theoretically the 

fluid friction and in-tube heat transfer for a stabilized 
turbulent flow of an incompressible fluid in a round 
tube with internally sand-grain-roughened walls 
at moderate Prandtl numbers. A mixing-length ap- 
proach [2] was used in the formulation of Rotta [3] to 
generalize our earlier results [4, 51 for smooth wall 
tubes. Tables of Fanning friction factors and in-tube 

Nusselt numbers were presented in refs. [I, 4, 51 to 
compare our predictions to similar theoretical and/or 
experimental results published elsewhere. 

The mixing-length approach for the study of 
stabilized turbulent flows with internal roughness 
depends essentially on the knowledge of a dimen- 
sionless quantity A~I accounting for the influence of 
the roughness elements on the hydraulic and thermal 
characteristics of the flow (for smooth tubes Aq = 0). 
Formally the reference wall is shifted downward by a 
distance Ay and moves with a velocity AU in a direc- 
tion opposite to the direction of the main flow. If Aq 
is known as a function of the geometrical parameters 

of a particular type of wall roughness, then the pro- 
cedure developed in our previous studies [I, 41 can 
easily be applied to predict the friction characteristics 
of the flow in a circular tube with its walls roughened 
correspondingly. Usually the dependence of Av on the 
roughness geometry is determined using experimental 
information [3]. Once the mean value boundary layer 
profiles are available, with additional assumptions for 
a turbulent Prandtl number [3] and a cavity Stanton 
number [6], the numerical solution of the energy equa- 
tion can be carried out. 

The purpose of this communication is to extend the 

method [3] for the prediction of Aq for corrugated 

(roped) tubes [7-l I], using data for the geometry of 
the helical ridges and our experimental information 
for the hydraulic behaviour of the flow. This infor- 
mation was discussed in detail in part I of the present 
study [ 121 where it was reported in a form compatible 

with that of other authors. An attempt is also made 
to understand better the influence of the ridge shape 
on the momentum transfer mechanism. Next, we 
extend the idea of a sand-roughened wall thermal 
resistance [I, 61 for the case of corrugated tubes [7-l 01. 
Lastly, we report numerical results for the Fanning 

friction factor and the in-tube Stanton number for the 
tubes investigated. These results were obtained using 
the formalism and the slightly modified software 
described earlier [I, 4, 51. Due to the absence of 
detailed information for the geometry of the cor- 
rugated tubes studied in refs. [7-IO], a direct com- 
parison for the friction factors between our pre- 
dictions and similar results reported by other authors 
is not possible. 

THE PHYSICAL MODEL 

Despite the fact that several studies [7?10] were 

conducted on a variety of corrugated surfaces, a lack 
of sufficient knowledge about the flow mechanism 
over corrugated surfaces does not permit the pre- 
diction of the friction factors and the heat transfer 
rates by analytical methods. The similarity law 
concept, which was first developed by Nikuradse [ 131 
to correlate the friction results inside sand-grain- 
roughened tubes. was applied later [6, 141 to heat 
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specific heat capacity [J kg- ’ K ‘1 
tube inside diameter [m] 
roughness height [m] 
in-tube heat transfer coefficient 

]W m ‘K ‘1 
thermal conductivity [W m ’ K ‘1 

mixing length [m] 
pitch of corrugation [m] 
heat flux [W m ‘1 

tube radius [m] 
cap height of the ridge [m] 
cap width of the ridge [m] 

temperature [K] 
fuid velocity [m s ‘1 
shear velocity, (z,/~)“.~ [m s- ‘1 

axial distance [m] 
radial distance from the wall [ml. 

NOMENCLATURE 

Greek symbols 

lj helix angle [deg] 

%I eddy diffusivity of heat [ml s ‘1 

I:,,, eddy kinematic viscosity [m’ s- ‘1 

11 dynamic viscosity [Pa s] 
\ kinematic viscosity [m’ s ‘1 

L’ fluid density [kg m ‘1 
7 shear stress [Pa]. 

Dimensionless groups 

e+ roughness Reynolds number, 

(r/D,)Re( f/2)” s 
/’ Fanning friction factor, 2r,;(pl/,f,) 

I“ dimensionless mixing length. (Lu,!r) 
Nu Nusselt number, (h,D,/li) 
Pt Prandtl number, (c,,/lik) 

Pr, turbulent Prandtl number. (t:,,,/c,,) 
t.,>+ dimensionless radius of the tube, 

(D,U*/2\‘) 

RCJ Reynolds number. (U,,,D,/r) 

R(r’) momentum transfer roughness function. 

X/(2jf’)+2.5 In (2e/n,)+3.75 

St Stanton number, [!I,;‘( p V,,,c,)] 
r+ dimensionless temperature. T/(y,/pc’t& 

:+ 

dimensionless velocity. [i/u* 

o* 
/,‘,‘90 
dimensionless temperature, 

(T\\ - T)!‘(T, - r,,,) 

‘1 dimensionless radial distance measured 

from the wall, (_),.;v,,) 

AV dimensionless shift, (A~ir,,) 

@* dimensionless group, (p - t) * S/L,‘. 

Subscripts 

c core region 

C at the top of the ridge 

i inside diameter 
m mean value 
max maximum value 

r rough tube 
S smooth tube 
W at the wall. 

G(r+. Pr) heat transfer roughness function, Superscript 

[(j,Y2St- l)i’(,f12)” 5+R(e+)] H constant wall heat flux 

transfer studies. The model [6, 141 is based on the 
heat-momentum transfer analogy, for a two-region 
flow model. This model yields the velocity distribution 
for the turbulence-dominated part of the flow near 

the wall as 

Li+ = 2.5 In O./e) + R(e+ ). (I) 

The friction factor can be obtained by integrating the 
velocity c’+ = f,‘+(r), equation (I). over the entire 
cross-section of the tube. Utilizing the velocity defect 
law in the form Uz;,, - r/L = 3.75, the similarity law 
for rough surfaces can be obtained in the form 

R(LJ+) = J(2/f’)+2.5 In (2e/D,)+3.75. (2) 

Based on the assumption that the wall similarity 
law applies to both temperature and velocity profiles. 
in ref. [6] a heat transfer similarity law was proposed 

G(e’, P/.) = (f;/2!tI !, + R(r+). 

J( 02) 
(3) 

The functions R and G. equations (2) and (3). 
represent the effect of the roughness on the momen- 
tum and heat transport in the neighbourhood of the 
wall. They are independent of the geometry and the 
size of the test channel and are functions of such local 

parameters as the roughness Reynolds number 

the geometry of the ribs p/e, [I, and the ridge shape 
for corrugated tubes. The values of R and G are 
usually determined from experimental information. 

This point of view was shared by many authors 
investigating corrugated tubes : however. different 
values for the functions R and G were reported. 
according to the geometry and the shape of the helical 
ridging [7-lo]. Regardless of this the R and G func- 
tions facilitate the comparison of the experimental 
results reported. In ref. [I I] we showed that the func- 
tion R = R(e+), representing the etfect of the rough- 
ness on the momentum transport in the region near 
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the wall, could be related to the following geometrical 
parameters of the helical ridge (see Fig. 1) and the 
Reynolds number Re : 

where 

R= R~Re.elDi,~~,~*) (4) 

We expect that the same variables as in equation (4) 
will determine the dimensionless shift Art and we shall 
obtain a simple power law correlation for Aq in the 
form 

Detailed information for the geometry of corrugated 
tubes studied from other authors particu~drly to cal- 
culate the complex CD, is lacking in the literature and 
we have to utilize the information from our exper- 
iments to obtain this correlation. 

In the fully turbulent part of the wall region, the 
law of the wall for a uniformly roughened surface is 
similar to that for a smooth surface and the mean 
velocity distribution for smooth and rough surfaces 
differ with a constant value AU+ [3], namely 

AU+ = U,+ - U,? = ACJ+(Aq). (6a) 

For a particular roughness the value of AU+ can be 
obtained from 

AU+ = 2.5 In {OSRrJ(,fl2)) + 1.75-J’(2lf) 

(6b) 

if the data for the friction factor ,f’ are already avail- 
able. 

To investigate the effect of the helical ridge rough- 
ness of the tube wall on the totai thermal resistance 
of the fluid the latter can be decomposed into two 
components : 

(a) the thermal resistance of the fluid surrounding 
the roughness elements in the region 0 < q < 2e/D, ; 

r----- .-.-‘__-.I 1 

FIG. 1. Characteristic parameters of a spirally corrugated 
tube. 

(b) the thermal resistance of the core region 
2e/D,<q<l. 

Having this in mind we can describe the total thermal 
resistance of the fluid in the form of a Stanton number 
St, as 

St ’ 

+ St, ’ = (T,+ - 7.;) $2/f) + St, ’ 

where St,:’ is the core resistance which can be cal- 
culated using standard techniques [5, 151, while the 
wall layer resistance St; ’ which depends essentially 
on the particular type of roughness is defined from 

St;l = T57-Z 
z 

J(.fP) 
= y(e’, Pr) J(2u’) = St ’ -St, ’ 

(7) 

It is calculated as the difference between the total 
thermal resistance and the core thermal resistance. 
The function g(e+, Pr) in equation (7) is similar to 
the function G(e+, Pv), equation (3), defined in ref. 
[6] and utilized in refs. [7-10, 141. The two functions, 
however, could differ quantitatively since the function 

y(e+ 1 Pr) reflects the fluid thermal resistance in the 
region 0 < q < 2e/D,, i.e. up to the top of the ridge, 
whereas the function G(e+, Pr) represents the thermal 
resistance of the region near the wall beyond which 
the shear stresses due to viscosity can be neglected 
completely. 

From the above it becomes clear that once Aq and 
~(e+, Pr) are derived using experimental data for J 
and St, one can apply the procedures developed in 
refs. [l, 4, 51 to predict fluid friction and intube heat 
transfer for the case of corrugated tubes. 

THE MATHE~ATfCAL MODEL AND fTS 

SOLUTfON 

The solution deals with heat transfer for the case of 
a fully developed turbulent flow in a corrugated tube 
having internal helical ridges with boundary con- 
ditions of uniform wall heat flux. The uniform wall 
temperature boundary condition is not studied in 
what follows because it is known [ 1, 161 that numeri- 
cally the difference between the Nusselt (Stanton) 
numbers for uniform wall temperature and uniform 
wall heat flux is of the order of the experimental errors. 
The results to be reported are obtained ifthe following 
assumptions hold : 

(i) the fluid is single-phase, incompressible and its 
physical properties are constant ; 

(ii) the transport processes are time independent ; 
(iii) the turbulent flow is both hydrodynamically 

and thermally stabilized ; 
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(iv) the axial conduction and viscous dissipation in 
the fluid are neglected. 

For the case considered the momentum equation 
yields the linear shear stress distribution as 

5!Tm = I-t1 @a) 

where the shear stress is assumed to satisfy the consti- 

tutive equation 

(8b) 

Following ref. [I], for the wall region of the rough 

tube the eddy kinematic viscosity can be defined as 

where 

(L+/r,t) = 0.4(~+A~)(l-exp[-(t7+A~)r~/26]). 

(8d) 

Obviously, to calculate the velocity Cl ‘(,I) and the 
eddy kinematic viscosity X,,,%(V) from equation (8) 

one has to know the dependence of the dimensionless 
shift A~J on the geometry of the corrugated tube. Now 
following ref. [3], we shall extend the model for sand- 
grain roughness to helical ridging roughness and we 
shall establish a relationship between A4 and Re, c/D,, 
@* and p,. For this purpose equations (8) are intc- 
grated from zero to an unknown upper limit A9 for a 

given AC”. thus 

Pa) 

with 

dU. 2r:]l -(v+Aul)l 

dv = I + (I +4rt”[l -(~+Ar~)](L+:‘r~)‘) I) ‘. 

(9b) 

The values for AU+ in equation (9a) were obtained 
from equation (6b) using the experimental data for 
the friction factor coefficient f: Now Ag can be cal- 
culated as the root of the (implicit) non-linear cqua- 
lion (9a). Figure 2 shows the calculated results for 
the cast of helical ridging roughness. They can be 

approximated by (see also equation (5)) 

Av/ = 108.SRr 0 ‘“(c,;D,)” “Y/j; I?@* 0 (1: (l(J) 

in the ranges 

IO” < Re < 6x IO”: 0.017 <r/D, < 0.047: 

0.760 < & < 0.950; 1.40 < @, < 5.90. 

To obtain correlation (I 0) WC used modifications of 

the QUADPACK routine QNG [I71 to approximate 
the integral in equation (9a). of the function ZEROIN 
[I 81 to solve equation (9a) for Aq for different values 
of AC’+ and the LINPACK routines DQRDC and 
DQRSL [ 191 to find the linear least squares fit for the 
data. The data set utilized to derive correlation (IO) 
comprised I50 experimental points. The rclativc 
residuals for Aa did not exceed rfr 10% for all points. 

In the core region there will be no correction for 
the wall roughness and the eddy kinematic viscosity 

distribution is the same as in ref. [I] (see also ref. [20]) 

I&,/\’ = o.o7044r,: [I -(I --rl)l] f I +2.345( I - tl)2j 

(I I) 

in the range tl,, d ry < I. 
The computational procedure which yields the vel- 

ocity profile U’ (q) and the values for r,: and flu 
from equations (8), (IO) and (I I) was discussed in 
detail in ref. [I]. Once the velocity distribution is avail- 
able, the Fanning friction factor ,f’ can be predicted 
from 

1 
,f’= 0.5 (1 -a)c’+(r) dg (12) 

A& 108.5Rea.5a 

0.7 r 

0.1 L I I I , I 

1 2 3 4 5 6 

Rex lOA 

FIG. 2. Variations of Aa(r;D,)m”X’/$, ’ ‘%z”’ with Reynolds number. 
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Heat transfer 
With the above assumptions the energy equation in 

the case of a constant wall heat flux boundary con- 
dition is [21] 

+ ~+(~)(.~2)n.j(l -V)NU = 0 (13a) 

with 

di? 
rl=o,e=o; r=I, --=o. 

drl 
(13b) 

Taking into account the correction for the roughness 
At!, the turbulent Prandtl number Pr, is defined 
[I, 3,211 as 

Pr, = 

f 
0.909&+/26, 4 = 0 

Io.909. I?w<<tll 

(13c) 

B+ = Pr-0.5 $J C,(log Pr)“-‘, O.O2<Pr<15 
P= I 

(134 

and C, = 31.96, Cz = 28.79, C, = 33.95, C, = 6.33, 
C, = - 1.186. 

The solution of the heat transfer problem, equa- 
tions (13), is a particular case ofthe problem discussed 
in detail in ref. [l]. Part of this procedure is applied 
to compute the heat transfer coefficient iVUH in tubes 
with helical ridging, calculating the values of Lyon’s 
integral [ 151 

(14) 

Many authors [9, 10, 22--241, indicate the insen- 
sitivity of the G-function to the variation of the shape 
and the geometrical parameters of the turbulence pro- 
moters, since the function R(e+) involved in the com- 
putation of the G-function already takes into account 
the hydraulic characteristics of the flow and the rough- 
ness parameters. We accept those arguments and sug- 
gest a power law relationship for the g-function in the 
fOrIn 

g(e+, Pv) = bo(e+)ht P+. (W 

As discussed in an earlier report [25], the values of the 
constants b, and hz in equation (15a) can be found 
applying Huntley’s dimensional analysis [26] without 
any experimental information. The values derived 
from the model [25] are b, = 0.20 and h? = 0.60. To 
verify the model [25] the variation of g(e+, Pr) Pr ‘I,‘” 
with ef was investigated, and Fig. 3 shows this vari- 
ation where the final correlation obtained is 

g(e+, I+) = 1.96(e+)0,26” Wh, 20 < e+ -c 300. 

(L5b) 

RESULTS AND DISCUSStON 

The Fanning friction factors calculated by equation 
(12) were compared with 346 experimental points 
obtained from 25 corrugated tubes tested. Two hun- 
dred and ninety-one points show a relative difference 
of less than +_ 10% and for the remaining 56 points the 
relative difference is + lO_15%. The numerical results 
for the friction factors together with the ex~rimental 
data of some corrugated tubes tested are presented in 
Table 1. 

The heat transfer coefficients (transformed as Stan- 
ton numbers) were calculated using equations (13)- 
(15). Three hundred and twenty-four calculated 
points were compared with those measured from the 
experiments. Except 19, all points show a relative 
difference of less than k 10% and the maximum rela- 
tive difference is less than + 15%. Part of the results 

FIG. 3. Variations of g(e +, Pr)Pr^’ “’ with roughness Reynolds number (e+). 
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Table I 
..___ 

XC I,,, 

15900 0.0316 
36900 0.0282 
53 100 0.0271 

13700 0.0277 
32 200 0.0244 
55 900 0.0232 

19300 0.0232 
33400 0.02 IX 
53 200 0.0207 

13600 0.0230 
37 300 0.0202 
5X 500 0.01X4 

14300 0.0215 
36 700 0.0 196 
57 600 0.0181 

17200 0.0185 
35 700 0.0160 
56 100 0.0152 

Tube 
No. 

__~ 

r;.,,, 

-.. 

Tube 
No. 

II 

12 

13 

15 

17 

33 

Tube 
No. f L\P f1.,1‘ Rc id 

14500 0.023X 0.0217 
36 200 0.0202 0.0200 
58 900 0.0190 0.0189 

13700 0.0286 
35 000 0.025X 
5x x00 0.0240 

15400 0.0264 
33 500 0.023 1 
55 500 0.0220 

I6200 0.0234 
35400 0.0210 
53 100 0.0200 

15 800 
33 600 
55 X00 

14400 
29 700 
49 600 

0.0341 
0.0305 
0.0280 

0.0363 
0.0332 
0.0305 

0.0270 
0.023x 
0.02 19 

0.0262 
0.0235 
0.0219 

0.023 I 
0.02 I4 
0.0203 

0.032 I 
0.0280 
0.0252 

0.0343 
0.0300 
0.0268 

14400 0.0216 0.0209 
36 800 0.0191 0.0194 
59 900 0.0174 0.01 X4 

16400 0.0193 0.0213 
33 500 0.017X 0.0200 
57900 0.0162 0.0180 

14 500 0.0226 0.0239 
36 500 0.0 190 0.0217 
59 400 0.0179 0.0203 

15600 0.0214 0.022 1 
39 300 0.0191 0.0202 
59 500 0.0174 0.0192 

14800 0.0260 0.0272 
36 800 0.0241 0.0240 
58 100 0.0228 0.022 1 

15400 0.0143 0.0136 
31900 0.0 130 0.0128 
53 700 0.0120 0.0125 

18 

19 

21 

23 

24 

34 

0.032 I 
0.0275 
0.0254 

0.0280 
0.0248 
0.0226 

0.0229 
0.0216 
0.0204 

0.0250 
0.0222 
0.0208 

0.0222 
0.0203 
0.0 193 

0.0181 
0.0173 
0.0166 

26 

27 

29 

31 

32 

35 

Table 2 

Tube 
No. 

Tube 
No. Re Pr SLIC 

13 

15 

17 

18 

19 

32 

13900 3.23 0.00466 0.00446 
40 300 2.46 0.00426 0.00460 
55 200 2.20 0.00416 0.00452 

13700 3.17 0.00419 0.00425 
24 600 2.77 0.00437 0.00439 
49 100 2.19 0.00425 0.00465 

14000 3.24 0.00506 0.00458 
37 100 2.55 0.00464 0.00424 
52 800 2.23 0.00447 0.00418 

15800 3.12 0.00560 0.00509 
39 300 2.43 0.00502 0.005 11 
52200 2.18 0.00478 0.00491 

13400 3.21 0.00507 0.00476 
2X 800 2.67 0.00473 0.00452 
53 400 2.20 0.00446 0.00434 

16300 3.03 0.00568 0.00515 
27 200 2.66 0.00536 0.00506 
52 000 2.17 0.00484 0.00516 

21 

24 

26 

29 

31 

33 

15 100 3.25 0.0045 1 0.00453 
39 200 2.57 0.00414 0.00445 
51200 2.36 0.00407 0.00415 

14000 3.21 0.00444 0.00424 
27 500 2.72 0.00434 0.00450 
51300 2.21 0.00420 0.00446 

15700 3.10 0.00442 0.00428 
26 400 2.75 0.0043 1 0.00456 
51300 2.25 0.00407 0.00427 

17 100 2.88 0.00488 0.00478 
27 400 2.59 0.00466 0.00469 
49 700 2.18 0.00443 0.00470 

13700 3.17 0.00471 0.00433 
39 000 2.46 0.0044 I 0.00448 
52 700 2.18 0.00425 0.00453 

13900 3.14 0.00301 0.00306 
41300 2.40 0.003 I6 0.00337 
51600 2.22 0.00309 0.00350 

are summarized in Table 2. Taking into account the 
experimental error in the measurements, this agree- 
ment should be considered as fairly good. 
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CARACTERISTIQUES DE TRANSFERT THERMIQUE ET DE FROTTEMENT POUR 
DES TUBES CORRUGUES EN SPIRALE POUR CONDENSEURS DE CENTRALE 

THERMIQUE-2. UN MODELE DE LONGUEUR DE MELANGE POUR PREDIRE LE 
FROTTEMENT FLUIDE ET LE TRANSFERT THERMIQUE 

Rbumk-On utilise une formulation de longueur de mkiange modi%e pour s’accorder B la suggestion de 
Rottd afin de prbdire le facteur de frottement et ie coefficient de transfer dans les tubes corrugu&s. Plusieurs 
param&res empiriques sont n6cessaires dans celle fo~ulation et ils sont obtenus B I’aide des don&s 
ex~~mentales. Les exptkiences sont faites avec de I’eau dam des tubes corrugues dans les domaines 
IO4 < Re < 6 x lo4 et 2,2 < Pr 6 3,4. Des formules simples sont sugg&es pour les relations entre ies deux 
paramktres les plus importants, $ la distance adimensionnelle A? et le nombre de Stanton St, de la cavit8, 
ainsi que les paramktres gkomttriques. Ces formules donnent les profils des couches limites, les coefficients 
de frottement et les nombres de Nusselt (Stanton) i travers les solutions des tquations de la quantitt? de 

mouvement et de I’bnergie pour un tcoulement monodimensionnel, indtpendant du temps. 

WARMEtiBERGANG UND DRUCKABFALL AN SPIRALFORMIG GERILLTEN 
ROHREN FiiR KRAFTWERKSKONDENSATOREN--2. EIN MISCHUNGSWEGMODELL 

ZUR BESTIMMUNG VON REIBUNG UND WARMEUBERGANG 

Zusammenfassung-Es wird ein Mischungswegmodetl, welches entsprechend den Vorschilgen von Rotta 
m~i~ziert wurde, zur Ber~hnung des Widerstandsbeiwerts und des W~~e~bergangskoe~zienten in 
gerillten Rohren verwendet. Dabei wird eine Reihe empirischer Parameter be@tigt, die durch Anpassung 
an Versuchsdaten gewonnen werden. Die Versuche werden in wasserdurchstr~mten, geritlten Rohren im 
Bereich der Reynolds-&h1 von 104 bis 6 x lo1 und der Prandtl-Zahl von 2,2 bis 3,4 durchgefiihrt. Es werden 
einfache Korrelationen fiir die Beziehung zwischen den beiden wichtigsten Parametern angegeben--dem 
dimensionslosen Abstand Aq, der sich von oben nach unten entlang der Bezugswand und mit der Stanton- 
Zahl des Hohlraums St, vedndert sowie den geometrischen Parametern der Rohrrillen. Diese Kor- 
relationen liefern die mittleren Grenzschichtprofile, die Widerstandsbeiwerte und die Nusselt-(Stanton-) 
Zahl durch die Lijsung der Imp&- und Energiegleichung fiir eindimensionaie stationare stabilisierte 

Striimung. 
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XAPAKTEPWCTHKH TEnJIOnEPEHOCA ki TPEHME TPYb CO CFWiPAJIbHbIM 
OPE6PEHkiEM B KOHAEHCATOPAX 3HEPl-ETWIECKWX YCTAHOBOK-2. 

WCnOJIb30BAHRE MOJJEJIH AJIMHbI CMEIIIEHWSI )JJUI PAC’JETA 
I-M~PO~AHAMMYECKOI-0 TPEHMR M TEnJIOIIEPEHOCA 

AHIIOTaqHs-@OpMynHpOBKa AJIRHbl CMeIIIeHm, MOAW$‘fI,ElpOBaHHaK B COOTBCTCTBAH c npennonoxe- 

HlleM POTTa, EUIOnb3yeTCSI AAR paC'IeTa K03+~IIWeHTOB TpeHMH II TetUIOIIepeHOCa B Ope6peHHbIX (C 

HaBABKOk) Tp,‘6. npkl 3TOM ~pe6yIOTCn HeCKOJIbKO 3MnHpWIeCKHX napaMCTpOB, KOTOpbIe nOny'IeHb1 

"OCpeACTBOM o6o6~emia3KCneptiMeHTanbHbIXAaHHbIX.3KCnep~MeHTbI IIpOBOARJINCbCIIOTOKOMBOAbI 

~Ope6peHHbIX Tpy6ax ~Aaanasoeax lo4 ,< Re < 6 x 104u 2,2 < Pr < 3,4. npeAno~eHbI npocTbIeCOOT- 

HOUICHHII MeaAy 6e3pa3MepHbIM paCCTORHHeM Aq,wCnOM CT3HTOHaAnP IIOJIOCTH St, H PZOMeTpH'IeC- 

KliMU "apaMeTpaMH,XapaKTepH3ylOlUHMH ope6peHPie Tpy6.3TA COOTHOUleHHl tI03BOJIllH)T OnpeACnHTb 

npo+ins cpeAH5ix BemiwiH B norpaHmHoM cnoe, K03@&iwieHTbI T~CHHK II wcna HyCCenbTa 

(CT3HTOHa)C "OMOIAbK) pe"IeHlln ypaBHeHHic KOnMYeCTBa ABHWZHIIR H 3HepNM A."R OAHOMCpHOrO CTP- 


